
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Solutions - Homework 1
(Due date: September 25th @ 5:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)
 Complete the following table. We are representing positive integer numbers.

Decimal BCD (bits) Binary Hexadecimal

766 0111 0110 0110 1011111110 2FE

395 0011 1001 0101 110001011 18B

172 0001 0111 0010 10101100 AC

249 0010 0100 1001 11111001 F9

 Complete the following table. Use the fewest number of bits in each case:

REPRESENTATION

Decimal Sign-and-magnitude 1's complement 2's complement

-247 111110111 100001000 100001001

-51 1110011 1001100 1001101

-111 11101111 10010000 10010001

-180 110110100 101001011 101001100

101 01100101 01100101 01100101

55 0110111 0110111 0110111

PROBLEM 2 (20 PTS)
 Perform the following additions and subtractions of 8-bit unsigned integers. Indicate every carry (or borrow) from c0 to c8

(or b0 to b8). For the addition, determine whether there is an overflow. For the subtraction, determine whether we need
to keep borrowing from a higher byte.

Example:
 54 + 210  77 - 194

 129 + 103  43 – 98

 198 + 67  149 – 87

54 = 0x36 = 0 0 1 1 0 1 1 0 +

210 = 0xD2 = 1 1 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=1

c 2
=1

c 1
=0

c 0
=0

77 = 0x4D = 0 1 0 0 1 1 0 1 -

194 = 0xC2 = 1 1 0 0 0 0 1 0

0 0 0 0 1 0 1 1

b
8=

1
b

7=
0

b
6=

0
b

5=
0

b
4=

0
b

3=
0

b
2=

1
b

1=
0

b
0=

0

Overflow!

Borrow out!

129 = 0x81 = 1 0 0 0 0 0 0 1 +

103 = 0x67 = 0 1 1 0 0 1 1 1

232 = 0xE8 = 1 1 1 0 1 0 0 0

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=0

c 3
=1

c 2
=1

c 1
=1

c 0
=0

Overflow!

No Overflow

198 = 0xC6 = 1 1 0 0 0 1 1 0 +

67 = 0x43 = 0 1 0 0 0 0 1 1

0x09 = 0 0 0 0 1 0 0 1

c 8
=1

c 7
=1

c 6
=0

c 5
=0

c 4
=0

c 3
=1

c 2
=1

c 1
=0

c 0
=0

43 = 0x2B = 0 0 1 0 1 0 1 1 -

98 = 0x62 = 0 1 1 0 0 0 1 0

0xC9 = 1 1 0 0 1 0 0 1

b
8=
1

b
7=

1
b

6=
0

b
5=

0
b

4=
0

b
3=

0
b

2=
0

b
1=

0
b

0=
0

No Borrow Out

Borrow out!

149 = 0x95 = 1 0 0 1 0 1 0 1 -

87 = 0x57 = 0 1 0 1 0 1 1 1

62 = 0x3E = 0 0 1 1 1 1 1 0

b
8=
0

b
7=

1
b

6=
1

b
5=

1
b

4=
1

b
3=

1
b

2=
1

b
1=

0
b

0=
0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

 Perform the following operations by representing the numbers in 2’s complement representation using 8 bits. Indicate

every carry (from c0 to c8). Determine whether the operation results in an overflow.

 101 + 23  -90 - 82

 98 – 62

All of the addition/subtraction operations in 2’s complement arithmetic, regardless of whether the operands are positive or
negative, can be expressed as an addition:

98 – 62 = 98 + (-62) -90-82 = -90 + (-82)

The first step is to represent the positive numbers using the 2’s complement representation with 8 bits. This is a
straightforward process: we take the unsigned number representation and attach a zero to the left.
The second step is to represent the negative numbers in 2’s complement representation with 8 bits. To this end, we first
obtain the 2’s complement representation of the positive numbers. Then, we apply the 2’s complement operation to get

the 2’s complement representation of the negative numbers:

62 = 0x3E = 00111110  -62 = 0xC2 = 11000010

90 = 0x5A = 01011010  -90 = 0xA6 = 10100110

82 = 0x52 = 01010010  -82 = 0xAE = 10101110

Now, we are ready for the addition operations. This is a very simple step. The only difference is that the overflow is
specified by c8c7 (for 8 bits):

 BCD Addition: We want to add these two decimal numbers using normal binary addition:
 6289 + 3098 = 9387

- Convert the summation operands to their BCD representation.

- Add the binary numbers as if they were unsigned numbers.
- Specify which binary number we need to add to the previous summation so that we get the answer we are looking for

(9387).

The idea here is to implement BCD addition using standard binary summation. So, we first add the BCD numbers using
normal summation. Then, we “adjust” in order to get the proper BCD result. The “adjust” consists on adding a 0x6 to
every nibble position where the summation resulted in a number larger than 9.

In the ”6289 + 3098 = 9387” case, we found that the sum of two nibbles in the two least significant nibbles of the

summation is larger than 9. Thus, we need to add the number 0x0066 to the whole summation.

101 = 0x65 = 0 1 1 0 0 1 0 1 +

23 = 0x17 = 0 0 0 1 0 1 1 1

232 = 0x7C = 0 1 1 1 1 1 0 0

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=0

c 3
=1

c 2
=1

c 1
=1

c 0
=0c8c7=0

No Overflow

98 = 0x62 = 0 1 1 0 0 0 1 0 +

-62 = 0xC2 = 1 1 0 0 0 0 1 0

36 = 0x24 = 0 0 1 0 0 1 0 0

c 8
=1

c 7
=1

c 6
=0

c 5
=0

c 4
=0

c 3
=0

c 2
=1

c 1
=0

c 0
=0c8c7=0

No Overflow

-90 = 0xA6 = 1 0 1 0 0 1 1 0 +

-82 = 0xAE = 1 0 1 0 1 1 1 0

0x54 = 0 1 0 1 0 1 0 0
c 8
=1

c 7
=0

c 6
=1

c 5
=0

c 4
=1

c 3
=1

c 2
=1

c 1
=0

c 0
=0c8c7=1

Overflow!

0x 9 3 2 1 +

0x 0 0 6 6

0x 9 3 8 7

0x 6 2 8 9 +

0x 3 0 9 8

c 4
=0

c 3
=0

c 2
=1

c 1
=1

c 0
=0

1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 +

0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0

1 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1

0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 1 +

0 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0

c 1
6=

0
c 1

5=
1

c 1
4=

1
c 1

3=
0

c 1
2=

0

c 1
1=

1
c 1

0=
1

c 9
=0

c 8
=0

c 7
=1

c 6
=1

c 5
=0

c 4
=0

c 3
=0

c 2
=1

c 1
=1

c 0
=0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

PROBLEM 3 (15 PTS)
 A microprocessor has a 32-bit address line. The size of the memory contents of each address is 8 bits.

- What is the address range (lowest to highest, in hexadecimal) of the memory space for this microprocessor? What is
the size (in bytes, KB, or MB) of the memory space?

- A memory device is connected to the microprocessor. Based on the size of the memory, the microprocessor has

assigned the addresses 0xA0400000 to 0xA07FFFFF to this memory device. What is the size (in bytes, KB, or MB) of

this memory device? What is the minimum number of bits required to represent the addresses on this memory device?

- Address Range: 0x00000000 to 0xFFFFFFFF.

With 32 bits, we can address 232 bytes, thus, we have 22230 = 4 GB of address space
- As per the figure below, we only need 22 bits for the address in the given range. Thus, the size of the memory device

is 222 = 4MB.

 The figure below depicts the complete memory space of a microprocessor:

- What is the size (in bytes) of the memory space? What is the address bus size of the microprocessor?
- If we have a memory chip of 8MB, how many bits do we require to address 8MB of memory (each memory address

occupies 1 byte)?

- If we want to connect the 8MB memory chip to the microprocessor, provide an address range (within the given
memory space) that allows the 8MB of memory to be properly address. You are only allowed to use the non-occupied
portions of the memory space as shown in the figure below.

-

- Address Range: 0x0000000 to 0x3FFFFFF. To represent all these addresses, we require 26 bits. So, the address bus

size of the microprocessor is 26 bits. The size of the memory space is then 226 = 64MB.
- 8MB memory device: 8MB = 23220 = 223 bytes. Thus, we require 23 bits to address the memory device.

- If we had a memory space of 8MB, then with 23 bits, the address range would be: 0x000000 to 0x7FFFFF. So, we

need to place this range within the memory space from $0000000 to $3FFFFFF. There are 4 options in the figure,

and we picked the address range from: 0x1000000 to 0x17FFFFF.

8 bits

0
x
3
F
F
F
F
F
F

0
x
0
0
0
0
0
0
0

0
x
0
7
F
F
F
F
F

0
x
1
8
0
0
0
0
0

0
x
1
F
F
F
F
F
F

0
x
3
0
0
0
0
0
0

...

1010 0000 0100 0000 0000 0000 0000 0000: 0xA0400000

1010 0000 0100 0000 0000 0000 0000 0001: 0xA0400001

...

...

...

1010 0000 0111 1111 1111 1111 1111 1111: 0xA07FFFFF

Address
8 bits

...

8 bits

0
x
3
F
F
F
F
F
F

0
x
0
0
0
0
0
0
0

0
x
0
7
F
F
F
F
F

0
x
1
8
0
0
0
0
0

0
x
1
F
F
F
F
F
F

0
x
3
0
0
0
0
0
0

...

0
x
1
0
0
0
0
0
0

0
x
1
7
F
F
F
F
F

...

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

PROBLEM 4 (15 PTS)
 Multi-precision addition: Write a set of instructions that properly perform the following

unsigned addition: $1E827D+$A28B24.

Your code first needs to store these constants in memory addresses $1000 and $1003

respectively (from higher byte to lower byte, as shown in the figure). The result (3 bytes) must
be stored starting from memory address $1006. Complete the respective memory contents (in

hexadecimal) in the figure.

Assembly Code (there is more than one possibility):

movw #$827D, $1001 ; m[$1001]  $82, m[$1002]  $7D

movb #$1E, $1000 ; m[$1000]  $1E

movw #8B24, $1004 ; m[$1004]  $8B, m[$1005]  $24

movb #$A2, $1003 ; m[$1003]  $A2

ldd $1001 ; D  [$1001]:[$1002] = $827D

addd $1004 ; D  [D] + [1004]:[1005] = $827D + $8B24, C  1

std $1007 ; m[$1007]  DH = $0D , m[$1008]  DL = $A1

ldaa $1000 ; A  [$1000] = $1E

adca $1003 ; A  [A] + [$1003] + C = $1E + $A2 + 1

staa $1006 ; m[$1006]  [A] = $C1

PROBLEM 5 (15 PTS)
 For the following set of instructions, provide the contents (in hexadecimal) of X, Y and relevant memory addresses after

the last instruction has been executed. The figure on the left shows the values on X, Y, and memory before the first

instruction is executed.

ldy 3,X- ; Y  [[X]]=[$20A0] = $209F, X  $20A0-$3 = $209D

movw [1,Y],4,+X ; Source Address = [$20A0]:[$20A1] = $209F

 ; X  $209D + $4 = 20A1

 ; Source Data: [$209F:$20A0] = $A320

 ; Destination Address: $20A1

 ; Then: m[$20A1]  $A3, m[$20A2]  $20

clra ; A  $00

clrb ; B  $00

staa [D,Y] ; Destination Address = [$0+$209F] = [$209F] = $A320

 ; m[$A320]  [A] = $00

$ 1 E 8 2 7 D +

$ A 2 8 B 2 4

$ C 1 0 D A 1

c 6
=

0
c 5

=
0

c 4
=

1
c 3

=
0

c 2
=

0
c 1

=
1

c 0
=

0

Address 8 bits

$1E

$82

$7D

$A2

$8B

$24

$C1

...

0x1000

0x1003

0x1006

... $0D

$A1

Y: $0000

ldy 3,X-

movw [1,Y], 4,+X

clra

clrb

staa [D,Y]

Address 8 bits

$A3

$20

$9F

...

0x209D

0x20A2

0x20A3

...

0x20A1

0x20A0

0x209F

0x209E

Address 8 bits

$A3

$20

$A3

$20

...

0x209D

0x20A2

0x20A3

...

0x20A1

0x20A0

0x209F

0x209E

X: $20A0

Y: $209F

X: $20A1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

PROBLEM 6 (20 PTS)
Given the following set of instructions, complete the following:
 Register values (in hexadecimal format) as the instructions are executed.
 The state of the memory contents (in hexadecimal format) after the last instruction has been executed. Also, specify the

memory address at which the contents of D are stored (last instruction).

 The addressing mode of each instruction. Be specific, if for example the addressing mode is indexed, indicate which one
in particular. Note that the movw instruction uses two addressing modes.

$00A B $000FX Y$00 $0000

clra

clrb

ldx #$0F

ldy #$00

ldy #$1000

movw #$1F30,0,Y

ldab #149

sex b,d

nega

addd 0,y

iny

exg x,y

std [-1,X]

$00A B $000FX Y$00 $1000

$00A B $000FX Y$00 $1000

$00A B $000FX Y$95 $1000

$FFA B $000FX Y$95 $1000

$01A B $000FX Y$95 $1000

$20A B $000FX Y$C5 $1001

$20A B $1001X Y$C5 $000F

$20A B $000FX Y$C5 $1000

$1F

$30

0x1F30

0x1F31

$20

...

0x1000

0x1001

$C5

Addressing Mode

Inherent

Immediate

Address where
D is stored

Immediate

Immediate, Indexed - Constant Offset

Immediate

Inherent

Inherent

Indexed - Constant Offset

Inherent

Inherent

Indexed Indirect - 16-bit Offset

